POLYTOPES WITH PRESCRIBED CONTENTS OF (n-1)-FACETS

BY

GEORGE PURDY

ABSTRACT

If an *n*-dimensional polytope has facets of area A_1, A_2, \dots, A_m , then $2A_i < A_1 + \dots + A_m$ for $i = 1, \dots, m$. We show here that conversely these inequalities also ensure the existence of a polytope having these areas.

Introduction

Let a polytope be given in E^n whose faces have the (n-1)-dimensional volumes A_1, \dots, A_m . By projecting the polytope onto the plane of any face it is readily seen that $0 < A_j < \sum_{i \neq j} A_i$ for all j. We may also write these inequalities as $0 < 2A_j < \sum_{i=1}^m A_i$. The purpose of this note is to prove

THEOREM 1. If A_1, \dots, A_m are positive numbers such that $m \ge n+1$ and

$$2A_j < \sum_{i=1}^m A_i$$
 for all j ,

then there exists an n-dimensional convex polytope whose m faces have (n-1)-dimensional volumes A_1, \dots, A_m .

This problem arises naturally in many situations. (See, for example, [3] and some of the references cited there.)

We will make use of the following theorem due to H. Minkowski (see (1) or [2]).

THEOREM. If X_1, \dots, X_m are pairwise nonparallel vectors in E^n of rank n and $\sum_{i=1}^{m} X_i = 0$ then there exists an n-dimensional convex polytope whose ith face has

Received January 22, 1977 and in revised form May 19, 1977

In view of Minkowski's theorem, Theorem 1 would follow from

THEOREM 2. If A_1, \dots, A_m are positive numbers such that $m \ge n+1$ and $2A_j < \sum_{i=1}^m A_i$ for all j, then there exists a collection X_1, \dots, X_m of vectors of rank n and distinct directions such that $\sum_{i=1}^m X_i = 0$ and $|X_i| = A_i$ for all i.

We begin by proving a lemma, and then we prove Theorem 2.

LEMMA. Let $n \ge 2$, and let $A_1, \dots, A_{n+1} > 0$ and $2A_j < \sum_{i=1}^{n+1} A_i$ for all j. Then there exist vectors X_1, X_2, \dots, X_{n+1} in E^n such that $|X_i| = A_i$ for all $i, \sum_{i=1}^{n+1} X_i = 0$, and X_1, \dots, X_{n+1} has rank n. Consequently the X_i are pairwise nonparallel.

PROOF. If n = 2 the result is true by elementary geometry. Suppose n > 2 and use induction on *n*. We suppose that $0 < 2A_j < \sum_{i=1}^{n+1} A_i$ for all *j*. Without loss of generality let A_1 and A_2 be the two smallest of the A_i and let A_{n+1} be the largest, and suppose that $A_1 \leq A_2$. There exists $\varepsilon > 0$ such that

$$2A_{n+1} < \sum_{i=1}^{n+1} A_i - \varepsilon$$
 and $A_1 > \varepsilon$.

Now the *n* numbers $A_3, A_4, \dots, A_{n+1}, A_1 + A_2 - \varepsilon$ satisfy the induction hypothesis, since $n+1 \ge 4$ and

$$A_1 + A_2 - \varepsilon < A_1 + A_2 \leq \sum_{i=3}^{n+1} A_i,$$

and $2A_i < \sum_{i=3}^{n+1} A_i + A_1 + A_2 - \varepsilon$ for $3 \le k \le m+1$. Hence there exists a rank n-1 set of vectors Z, X_i $3 \le i \le n+1$, such that $|Z| = A_1 + A_2 - \varepsilon$, $|X_i| = A_i$, $3 \le i \le n+1$, and $Z + \sum_{i=3}^{n+1} X_i = 0$.

Let a coordinate system be chosen for E^n so that $Z = (0, A_1 + A_2 - \varepsilon, 0, \dots, 0)$, and so that every X_i $(3 \le i \le n + 1)$ has first coordinate zero.

Since $0 < A_1 \le A_2 < A_1 + A_2 - \varepsilon < A_1 + A_2$, we may apply the lemma for n = 3 in the plane $\{(x_1, x_2, \dots, x_n): x_3 = \dots = x_n = 0\}$ to obtain $X_1 = (u, v, 0, \dots, 0), X_2 = (-u, w, 0, \dots, 0)$ and $W = (0, -A_1 - A_2 + \varepsilon, 0, \dots, 0)$ such that $\{X_1, X_2, W\}$ has rank two and $X_1 + X_2 + W = 0$. Since W = -Z we have $X_1 + X_2 + X_3 + \dots + X_{n+1} = 0$, and $\{X_1, \dots, X_{n+1}\}$ is easily seen to have rank n, since $\{X_3, \dots, X_{n+1}\}$ has rank n - 1 and $u \neq 0$.

PROOF OF THEOREM 2. If m = n + 1 this is the lemma. Let m > n + 1 and use induction on m. We suppose $0 < 2A_j < \sum_{i=1}^{m} A_i$ for all j. Let $\varepsilon > 0$ be such that

G. PURDY

 $2A_m < \sum_{i=1}^m A_i - \varepsilon$ and $A_1 > \varepsilon$. As in the proof of the lemma, we suppose without loss of generality that A_1 and A_2 are the two smallest of the A_i and that A_m is the largest and that $A_1 \leq A_2$. As in the proof of the lemma, the numbers $A_3, A_4, \dots, A_m, A_1 + A_2 - \varepsilon$ satisfy the induction hypothesis. Hence there exists a rank *n* set of vectors Z, X_3, \dots, X_m having different directions such that $|Z| = A_1 + A_2 - \varepsilon, |X_i| = A_i, 3 \leq i \leq m$ and $Z + \sum_{i=3}^m X_i = 0$.

Let π be any plane through the origin containing Z but not X_3, \dots, X_m . Let a coordinate system be chosen so that π is given by $x_3 = \dots = x_n = 0$ and $Z = (A_1 + A_2 - \varepsilon, 0, \dots, 0)$. Now apply the lemma with n = 3 in the plane π to A_1, A_2 and $A_1 + A_2 - \varepsilon$ to obtain $X_1 = (u, v, 0, \dots, 0), X_2 = (w, -v, 0, \dots, 0)$ and $W = (-A_1 - A_2 + \varepsilon, 0, \dots, 0)$ such that $\{X_1, X_2, W\}$ has rank two and $X_1 + X_2 + W = 0$. Since W = -Z, we have $\sum_{i=1}^m X_i = 0$, and $\{X_1, \dots, X_m\}$ has rank *n*, since every linear combination of Z, X_3, \dots, X_m is also a linear combination of X_1, \dots, X_m , and the directions of X_1, \dots, X_m are also distinct. This completes the proof of Theorem 2.

REMARK. Since the inequalities $2A_i < \sum_{i=1}^{m} A_i$ must also hold for the (n-1)dimensional volumes of a non-convex polytope in E^n we deduce that to every non-convex polytope corresponds a convex polytope whose faces have the same (n-1)-dimensional volumes.

References

1. Branko Grünbaum, Convex Polytopes, John Wiley and Sons, 1967, pp. 339-340.

2. H. Minkowski, Allgemeine Lehrsätze über die konvexe Polyheder, in Nachr. Ges. Wiss. Göttingen, 1897, pp. 198–219.

3. G. Purdy, Spheres tangent to all the faces of a simplex, J. Combinatorial Theory 17 (1974), 131-133.

DEPARTMENT OF MATHEMATICS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS 77843 USA